organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.61 \times 0.26 \times 0.23 \text{ mm}$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 297 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5*E*)-5-(4-Methoxybenzylidene)-2-(piperidin-1-yl)-1,3-thiazol-4(5*H*)-one

Hoong-Kun Fun,^a*‡Chin Sing Yeap,^a§Prajwal L. Lobo,^b D. Jagadeesh Prasad^b and Boja Poojary^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Mangalore University, Karnataka, India Correspondence e-mail: hkfun@usm.my

Received 27 June 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.119; data-to-parameter ratio = 28.4.

In the title compound, $C_{16}H_{18}N_2O_2S$, the piperidine ring adopts a chair conformation. The central 4-thiazolidinone ring makes dihedral angles of 12.01 (7) and 51.42 (9)°, respectively, with the benzene ring and the least-squares plane of the piperidine ring. An intramolecular $C-H\cdots S$ hydrogen bond stabilizes the molecular structure and generates an *S*(6) ring motif. In the crystal, molecules are linked into a tape along the *c* axis by intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For general background to the title compound, see: Lesyk & Zimenkovsky (2004); Lesyk *et al.* (2007); Havrylyuk *et al.* (2009); Ahn *et al.* (2006); Park *et al.* (2008); Geronikaki *et al.* (2008); Zimenkovsky *et al.* (2005). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data C₁₆H₁₈N₂O₂S

 $M_r = 302.38$

‡ Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: A-5523-2009.

WIOHOCHI	IC, $\Gamma Z_1/C$
a = 8.581	1 (3) Å
b = 16.51	65 (6) Å
c = 12.493	30 (4) Å
$\beta = 121.5$	18 (2)°
V = 1509.	42 (9) $Å^3$

Data collection

Bruker APEXII DUO CCD area-	20021 measured reflections
detector diffractometer	5432 independent reflections
Absorption correction: multi-scan	4148 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.023$
$T_{\min} = 0.877, \ T_{\max} = 0.950$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	191 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
5432 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots O1^{i}$	0.93	2.48	3.3048 (16)	147
$C5-H5A\cdots$ S1	0.93	2.58	3.2809 (15)	132
$C16-H16A\cdotsO1^{ii}$	0.96	2.48	3.421 (3)	167

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2743).

References

- Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). *Bioorg. Med. Chem. Lett.* 16, 2996– 2999.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Geronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221–5228.
- Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396–1404.
- Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648.
- Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547-1577.
- Park, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250–2255.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Ann. Polish Chem. Soc. 1, 69–72.

supplementary materials

Acta Cryst. (2011). E67, o1915 [doi:10.1107/S1600536811025761]

(5E)-5-(4-Methoxybenzylidene)-2-(piperidin-1-yl)-1,3-thiazol-4(5H)-one

H.-K. Fun, C. S. Yeap, P. L. Lobo, D. J. Prasad and B. Poojary

Comment

4-Thiazolidinone ring system is a core structure in various synthetic compounds which display a broad spectrum of biological activities (Lesyk & Zimenkovsky, 2004) including an anticancer effect (Lesyk *et al.*, 2007; Havrylyuk *et al.*, 2009). Mechanisms of 4-thiazolidinones and related heterocycles antitumor activity may be associated with the affinity to anticancer bio-targets, such as phosphatase of a regenerating liver (PRL-3) (Ahn *et al.*, 2006; Park *et al.*, 2008) and non-membrane protein tyrosine phosphatase (SHP-2) (Geronikaki *et al.*, 2008). 5-Arylidene derivatives were previously shown as the most active group of compounds with the anticancer activity among a large pool of 4-azolidone derivatives and analogs (Zimenkovsky *et al.*, 2005). This prompted us to synthesize title compound (I).

The central 4-thiazolidinone ring makes dihedral angles of 12.01 (7) and 51.42 (9)°, respectively, with the benzene ring and the least-squares plane of piperidine ring. The piperidine ring adopts a chair conformation. An intramolecular C5—H5A···S1 hydrogen bond (Table 1) stabilizes the molecular structure and generates an S(6) ring motif (Fig. 1; Bernstein *et al.*, 1995). In the crystal structure, the molecules are linked into a tape along the *c* axis by intermolecular C16—H16A···O1 and C2—H2A···O1 hydrogen bonds (Table 1 and Fig. 2).

Experimental

An equimolar mixture of 2-(piperidin-1-yl)-1,3-thiazol-4(5*H*)-one, anisaldehyde and sodium acetate in acetic acid was refluxed for 2 hrs. The product formed was filtered, washed, dried and re-crystallized from ethanol.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating-group model were applied for methyl group.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability ellipsoids for non-H atoms. Hydrogen bonds (dashed lines) are shown.

Fig. 2. The crystal packing of the title compound, showing the molecules linked along the c axis. Hydrogen bonds (dashed lines) are shown.

(5E)-5-(4-Methoxybenzylidene)-2-(piperidin-1-yl)-1,3-thiazol-4(5H)-one

Crystal data

$C_{16}H_{18}N_2O_2S$	F(000) = 640
$M_r = 302.38$	$D_{\rm x} = 1.331 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6389 reflections
a = 8.5811 (3) Å	$\theta = 2.8 - 32.3^{\circ}$
b = 16.5165 (6) Å	$\mu=0.22\ mm^{-1}$
c = 12.4930 (4) Å	T = 297 K
$\beta = 121.518 \ (2)^{\circ}$	Block, brown
$V = 1509.42 (9) \text{ Å}^3$	$0.61\times0.26\times0.23~mm$
Z = 4	

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	5432 independent reflections
Radiation source: fine-focus sealed tube	4148 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ϕ and ω scans	$\theta_{\text{max}} = 32.6^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -12 \rightarrow 12$
$T_{\min} = 0.877, T_{\max} = 0.950$	$k = -25 \rightarrow 25$
20021 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.039$
$wR(F^2) = 0.119$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 0.2092P]$ where $P = (F_o^2 + 2F_c^2)/3$
5432 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
191 parameters	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.20003 (4)	0.555618 (16)	0.50684 (2)	0.03982 (9)
01	0.39228 (18)	0.38959 (6)	0.75694 (9)	0.0638 (3)
O2	0.27412 (16)	0.35919 (6)	0.04461 (9)	0.0561 (2)
N1	0.28424 (15)	0.51913 (6)	0.73753 (9)	0.0425 (2)
N2	0.16266 (16)	0.64775 (6)	0.66938 (10)	0.0455 (2)
C1	0.32029 (16)	0.31624 (6)	0.34274 (10)	0.0382 (2)
H1A	0.3436	0.2711	0.3935	0.046*
C2	0.30857 (17)	0.30703 (7)	0.22911 (11)	0.0418 (2)
H2A	0.3216	0.2560	0.2034	0.050*
C3	0.27723 (16)	0.37401 (7)	0.15287 (11)	0.0409 (2)
C4	0.2523 (2)	0.44940 (7)	0.19023 (12)	0.0479 (3)
H4A	0.2292	0.4944	0.1392	0.057*
C5	0.2618 (2)	0.45754 (6)	0.30353 (12)	0.0457 (3)
H5A	0.2434	0.5084	0.3271	0.055*
C6	0.29786 (15)	0.39221 (6)	0.38362 (10)	0.0349 (2)
C7	0.31827 (16)	0.39806 (6)	0.50618 (10)	0.0374 (2)
H7A	0.3601	0.3509	0.5536	0.045*
C8	0.28758 (16)	0.45928 (6)	0.56330 (10)	0.0366 (2)
C9	0.32720 (18)	0.45128 (7)	0.69525 (11)	0.0422 (2)
C10	0.21678 (16)	0.57634 (6)	0.65225 (10)	0.0375 (2)
C11	0.1834 (2)	0.66894 (8)	0.79030 (12)	0.0500 (3)
H11A	0.2454	0.6255	0.8501	0.060*
H11B	0.0640	0.6764	0.7798	0.060*
C12	0.2935 (2)	0.74644 (8)	0.83907 (13)	0.0562 (3)
H12A	0.2980	0.7631	0.9151	0.067*
H12B	0.4178	0.7364	0.8601	0.067*
C13	0.2120 (2)	0.81400 (9)	0.74341 (16)	0.0675 (4)

supplementary materials

0.2908	0.8611	0.7753	0.081*
0.0938	0.8289	0.7301	0.081*
0.1894 (2)	0.78837 (8)	0.61928 (15)	0.0576 (3)
0.1271	0.8307	0.5574	0.069*
0.3088	0.7804	0.6300	0.069*
0.08081 (19)	0.71084 (7)	0.57317 (12)	0.0489 (3)
-0.0437	0.7208	0.5517	0.059*
0.0770	0.6927	0.4980	0.059*
0.2685 (3)	0.42727 (11)	-0.02815 (15)	0.0677 (4)
0.2886	0.4093	-0.0931	0.102*
0.3621	0.4652	0.0252	0.102*
0.1511	0.4530	-0.0654	0.102*
	0.2908 0.0938 0.1894 (2) 0.1271 0.3088 0.08081 (19) -0.0437 0.0770 0.2685 (3) 0.2886 0.3621 0.1511	0.29080.86110.09380.82890.1894 (2)0.78837 (8)0.12710.83070.30880.78040.08081 (19)0.71084 (7)-0.04370.72080.07700.69270.2685 (3)0.42727 (11)0.28860.40930.36210.46520.15110.4530	0.29080.86110.77530.09380.82890.73010.1894 (2)0.78837 (8)0.61928 (15)0.12710.83070.55740.30880.78040.63000.08081 (19)0.71084 (7)0.57317 (12)-0.04370.72080.55170.07700.69270.49800.2685 (3)0.42727 (11)-0.02815 (15)0.28860.4093-0.09310.36210.45200.02520.15110.4530-0.0654

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.05518 (18)	0.03126 (13)	0.03620 (14)	0.00014 (10)	0.02609 (12)	-0.00056 (9)
01	0.1086 (9)	0.0433 (5)	0.0527 (5)	0.0192 (5)	0.0513 (6)	0.0128 (4)
O2	0.0807 (7)	0.0558 (5)	0.0460 (5)	0.0013 (5)	0.0430 (5)	-0.0033 (4)
N1	0.0585 (6)	0.0364 (4)	0.0369 (4)	-0.0010 (4)	0.0280 (4)	-0.0027 (3)
N2	0.0620(6)	0.0336 (4)	0.0418 (5)	0.0007 (4)	0.0276 (5)	-0.0061 (4)
C1	0.0459 (6)	0.0306 (4)	0.0402 (5)	0.0027 (4)	0.0241 (5)	0.0004 (4)
C2	0.0517 (6)	0.0348 (5)	0.0436 (5)	0.0021 (4)	0.0282 (5)	-0.0047 (4)
C3	0.0470 (6)	0.0423 (5)	0.0392 (5)	-0.0020 (4)	0.0267 (5)	-0.0038 (4)
C4	0.0711 (8)	0.0361 (5)	0.0474 (6)	0.0014 (5)	0.0386 (6)	0.0040 (4)
C5	0.0724 (8)	0.0282 (4)	0.0497 (6)	0.0004 (5)	0.0411 (6)	-0.0009 (4)
C6	0.0410 (5)	0.0307 (4)	0.0364 (5)	-0.0024 (4)	0.0226 (4)	-0.0028 (3)
C7	0.0474 (6)	0.0308 (4)	0.0376 (5)	-0.0014 (4)	0.0248 (4)	-0.0004 (4)
C8	0.0461 (5)	0.0312 (4)	0.0357 (5)	-0.0037 (4)	0.0235 (4)	-0.0020 (4)
C9	0.0594 (7)	0.0352 (5)	0.0380 (5)	0.0000 (4)	0.0297 (5)	0.0006 (4)
C10	0.0447 (5)	0.0320 (4)	0.0364 (5)	-0.0058 (4)	0.0217 (4)	-0.0065 (4)
C11	0.0590 (7)	0.0486 (6)	0.0479 (6)	-0.0020 (5)	0.0319 (6)	-0.0128 (5)
C12	0.0565 (7)	0.0517 (7)	0.0551 (7)	-0.0024 (6)	0.0254 (6)	-0.0216 (6)
C13	0.0740 (10)	0.0401 (6)	0.0770 (10)	0.0010 (6)	0.0316 (8)	-0.0188 (6)
C14	0.0613 (8)	0.0362 (5)	0.0704 (9)	-0.0002 (5)	0.0311 (7)	-0.0004 (6)
C15	0.0561 (7)	0.0361 (5)	0.0490 (6)	0.0042 (5)	0.0236 (6)	-0.0020 (5)
C16	0.0943 (12)	0.0728 (10)	0.0530 (8)	-0.0026 (9)	0.0503 (8)	0.0041 (7)

Geometric parameters (Å, °)

S1—C8	1.7435 (11)	С7—С8	1.3407 (15)
S1—C10	1.7790 (11)	С7—Н7А	0.9300
O1—C9	1.2225 (14)	C8—C9	1.5047 (15)
O2—C3	1.3609 (14)	C11—C12	1.5166 (19)
O2—C16	1.4309 (19)	C11—H11A	0.9700
N1—C10	1.3108 (14)	C11—H11B	0.9700
N1—C9	1.3691 (15)	C12—C13	1.513 (2)
N2—C10	1.3252 (14)	C12—H12A	0.9700
N2	1.4634 (16)	C12—H12B	0.9700

N2—C11	1.4680 (16)	C13—C14	1.519 (2)
C1—C2	1.3781 (16)	C13—H13A	0.9700
C1—C6	1.4053 (14)	C13—H13B	0.9700
C1—H1A	0.9300	C14—C15	1.5096 (18)
C2—C3	1.3912 (16)	C14—H14A	0.9700
C2—H2A	0.9300	C14—H14B	0.9700
C3—C4	1.3852 (16)	C15—H15A	0.9700
C4—C5	1.3811 (17)	C15—H15B	0.9700
C4—H4A	0.9300	C16—H16A	0.9600
C5—C6	1.3919 (15)	C16—H16B	0.9600
С5—Н5А	0.9300	C16—H16C	0.9600
C6—C7	1.4506 (15)		
C8—S1—C10	88.56 (5)	N2—C11—C12	109.25 (12)
C3—O2—C16	117.82 (11)	N2—C11—H11A	109.8
C10—N1—C9	111.72 (9)	C12—C11—H11A	109.8
C10—N2—C15	124.01 (10)	N2—C11—H11B	109.8
C10—N2—C11	120.94 (10)	C12—C11—H11B	109.8
C15—N2—C11	115.05 (10)	H11A—C11—H11B	108.3
C2—C1—C6	121.52 (10)	C13—C12—C11	111.81 (12)
C2—C1—H1A	119.2	C13—C12—H12A	109.3
C6—C1—H1A	119.2	C11—C12—H12A	109.3
C1—C2—C3	120.09 (10)	C13—C12—H12B	109.3
C1—C2—H2A	120.0	C11—C12—H12B	109.3
С3—С2—Н2А	120.0	H12A—C12—H12B	107.9
O2—C3—C4	124.79 (11)	C12—C13—C14	111.12 (11)
O2—C3—C2	115.70 (10)	C12—C13—H13A	109.4
C4—C3—C2	119.52 (10)	C14—C13—H13A	109.4
C5—C4—C3	119.75 (11)	C12—C13—H13B	109.4
С5—С4—Н4А	120.1	C14—C13—H13B	109.4
С3—С4—Н4А	120.1	H13A—C13—H13B	108.0
C4—C5—C6	122.21 (10)	C15—C14—C13	110.46 (13)
С4—С5—Н5А	118.9	C15—C14—H14A	109.6
С6—С5—Н5А	118.9	C13—C14—H14A	109.6
C5—C6—C1	116.88 (10)	C15—C14—H14B	109.6
C5—C6—C7	124.46 (9)	C13—C14—H14B	109.6
C1—C6—C7	118.64 (9)	H14A—C14—H14B	108.1
C8—C7—C6	131.54 (10)	N2-C15-C14	110.80 (11)
С8—С7—Н7А	114.2	N2—C15—H15A	109.5
С6—С7—Н7А	114.2	C14—C15—H15A	109.5
C7—C8—C9	121.47 (10)	N2—C15—H15B	109.5
C7—C8—S1	129.49 (9)	C14—C15—H15B	109.5
C9—C8—S1	109.03 (7)	H15A—C15—H15B	108.1
O1—C9—N1	124.43 (11)	O2—C16—H16A	109.5
01-09-08	122.07 (10)	O2-C16-H16B	109.5
N1 - C9 - C8	113 49 (9)	H16A-C16-H16B	109.5
N1-C10-N2	123 60 (10)	Ω^2 —C16—H16C	109.5
N1-C10-S1	117 18 (8)	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
N2-C10-S1	119 22 (9)	H16B-C16-H16C	109.5

supplementary materials

C6—C1—C2—C3	1.20 (18)	С7—С8—С9—О1	1.5 (2)
C16—O2—C3—C4	8.6 (2)	S1—C8—C9—O1	-178.96 (12)
C16—O2—C3—C2	-171.27 (13)	C7—C8—C9—N1	-178.78 (11)
C1—C2—C3—O2	177.84 (11)	S1—C8—C9—N1	0.74 (13)
C1—C2—C3—C4	-2.01 (19)	C9—N1—C10—N2	179.29 (12)
O2—C3—C4—C5	-178.76 (13)	C9—N1—C10—S1	-1.17 (14)
C2—C3—C4—C5	1.1 (2)	C15—N2—C10—N1	-177.59 (12)
C3—C4—C5—C6	0.7 (2)	C11—N2—C10—N1	2.90 (19)
C4—C5—C6—C1	-1.5 (2)	C15—N2—C10—S1	2.88 (17)
C4—C5—C6—C7	176.81 (12)	C11—N2—C10—S1	-176.63 (9)
C2-C1-C6-C5	0.53 (17)	C8—S1—C10—N1	1.37 (10)
C2—C1—C6—C7	-177.87 (11)	C8—S1—C10—N2	-179.07 (10)
C5—C6—C7—C8	9.2 (2)	C10-N2-C11-C12	123.69 (13)
C1—C6—C7—C8	-172.51 (12)	C15—N2—C11—C12	-55.87 (15)
C6—C7—C8—C9	-177.40 (11)	N2-C11-C12-C13	53.89 (16)
C6—C7—C8—S1	3.2 (2)	C11-C12-C13-C14	-54.80 (18)
C10—S1—C8—C7	178.38 (12)	C12-C13-C14-C15	54.15 (17)
C10—S1—C8—C9	-1.08 (9)	C10-N2-C15-C14	-122.75 (14)
C10—N1—C9—O1	179.94 (14)	C11—N2—C15—C14	56.79 (16)
C10—N1—C9—C8	0.25 (15)	C13-C14-C15-N2	-54.03 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C2—H2A···O1 ⁱ	0.93	2.48	3.3048 (16)	147
C5—H5A···S1	0.93	2.58	3.2809 (15)	132
C16—H16A···O1 ⁱⁱ	0.96	2.48	3.421 (3)	167

Symmetry codes: (i) *x*, –*y*+1/2, *z*–1/2; (ii) *x*, *y*, *z*–1.

Fig. 1

